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Information theory is used to study the effects of screening on the rate of 
entropy production during pattern formation. Screening is an effect where the 
outermost parts of a growing fractal pattern influence the growth probability at 
interior sites. The results demonstrate that a state of maximum entropy produc- 
tion does exist for dynamical systems which generate patterns based on simple 
screening rules alone. This state corresponds to a critical point where the pat- 
tern exhibits self-similarity and fractal properties typical of random aggregates. 
Scaling occurs because the screening transmits information from the smallest to 
the largest scales of the system. 
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Recently,  cons iderab le  effort has been d i rec ted  t oward  the s tudy of  r a n d o m  
fractals,  whose stat ic and  dynamic  proper t ies  scale with var ious  
exponents .  (~'2) Exper imen ta l  s tudies have demons t r a t e d  that  real  r a n d o m  
fractals  can be p r e p a r e d  in a var ie ty  of ways. (3-5) M a n y  of these 
exper iments  (e.g., dielectr ic  b r eakdown ,  diffusion-l imited e lec t rochemical  
depos i t ion)  suggest  tha t  the fo rma t ion  of fractals  occurs  when the dynami -  
cal system respons ib le  for the pa t t e rn  fo rma t ion  is at  a cri t ical  point .  (3-7) 

In a recent  letter,  Bak et aL (s) d e m o n s t r a t e d  tha t  many  self-organized 
ex tended  dynamica l  systems na tu ra l ly  evolve t o w a r d  a cri t ical  state where 
the var iables  of  the system begin to scale. Scaling represents  a t ransmiss ion  
of in fo rmat ion  from the smallest  to the largest  scale of  the system. Fur the r -  
more,  the rate  of in fo rmat ion  p r o d u c e d  by  Bak 's  mode l  system seems to 
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increase as the system approaches criticality. This contrasts with the 
suggestion of Prigogine that for self-organizing open systems in a steady 
state (e.g., of flow) one can apply a principle of minimum entropy produc- 
tion. (9) Important examples where Prigogine's principle may apply include 
living organisms which develop into highly ordered states that are stable 
for extended periods of time. The principle of minimum entropy production 
is valid for systems "not far from equilibrium, ''(9) whereas Bak's sand dune 
constantly produces configurations on the brink of collapse. One might 
expect that Bak's system evolves to a state of maximum entropy produc- 
tion, since the growth is ruled by fluctuations (sand is added to the dune 
at random sites). 

In an attempt to answer these questions for a simple dynamical 
system, we chose to study a primitive system which generates spatial 
patterns constrained only by connectivity and screening. Screening is an 
effect where the outermost parts of a growing fractal pattern influence the 
growth probability at interior sites. This property is common to many pro- 
cesses involving random aggregation. As the strength of the screening is 
varied, the rate of entropy production and the geometry of the spatial pat- 
tern wilt change. For each pattern, we use information theory to measure 
the rate of entropy production. The model is not intended to mimic any 
particular process; the intent is to determine if random fractals are 
produced at a critical point, to find the relative rate of entropy production, 
and to gain an intuitive understanding of the origin of scaling in such pat- 
terns. 

To understand how loss of information (as particles are added) 
corresponds to entropy production in pattern formation, it is convenient to 
consider a process which adds points to a plane at random. This models, 
for example, a totally inept dart thrower. The information produced by the 
system is the final location of each dart thrown. If multiple darts can 
occupy the same site, the expectation of where the next dart will land is 
completely flat. This corresponds to a maximum production of entropy. If 
darts are constrained to one per site, then every dart which hits the plane 
also destroys information or possibilities for future darts to land. The 
maximum state of entropy production, given some set of constraints, is that 
process which destroys information at a minimum rate. (1~ 

A typical growing system adds new particles adjacent to existing parts 
of the pattern. (1"3-5) At any instant in time the possible locations for growth 
are limited to some subset of the surface area of the pattern. The pattern 
of maximum total surface area is not necessarily the maximum entropy 
producer. For example, on a square lattice, the maximum surface area is 
produced by growth in a straight line. For every site (possibility) destroyed 
by adding a point to the end of the line, the net surface area is increased 
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by two. Any other operation produces new surface area at a slower rate. 
However, if one constrains growth to a straight line, never using vacancies 
on the sides, then the "active area" (the area where growth is permitted) is 
constant, as is the rate of information production and destruction. We 
expect the next point to be added at one of the two tips. Knowledge of 
both the "active area" and total surface area are necessary to determine the 
rate of entropy production of a growing pattern. 

The relationship between the change in total and active area and the 
entropy follows from the information theory of a discrete noiseless 
system. (11) If Pji is the probability that symbol rj will be received, given that 
symbol(s) ri have been received, then the unpredictability of a sequence of 
symbols is - Z j  Pji log Pji. The average information produced is this quan- 
tity weighted by the average probability Pi of the state i. (H'12) For pattern 
formation, the change in information on adding a particle to the system is 
the change in possible locations for future growth. For a particular labeled 
pattern (state i), let Pit = dAaCt/dN denote the probability that site aj will 
become active given the shape of the pattern (sites ai are occupied). By 
analogy, the unpredictability is - Z j  p/;log Pj~. Weighting the unpredic- 
tability by the average probability P~ = dAt~ of the particular pattern i, 
the change in entropy is - Z i j  PiPjilog Pj~ (where the sum is taken over 
every possible pattern at every stage in its growth). Obviously, it is not 
practical to take this sum even if the patterns are constrained to be finite 
subsystems of a finite medium. However, if the surface area and the active 
area both scale, then the corresponding probabilities for very large patterns 
(all of size N) will not vary much between patterns of the same fractal 
dimension. Such scaling also implies that the change in area A = N x per 
particle added tends to dA/dN = A / N  for large N. If there exist a value of 
the fractal dimension for which the number of distinct ways to grow is a 
maximum for every N, then the number of possible patterns will also be a 
maximum at that fractal dimension. Self-averaging of this kind would allow 
one to compare the number of choices open to particular patterns of 
different fractal dimension without summing over many configurations. The 
change in entropy 6S per particle added is then given by the approximjate 
relation 

6S = -(At~ log(A"Ct/N) (1) 

where Aact, the number of active sites, and At~ the total surface area, both 
scale with N to some fractal dimension. N is the area occupied by the 
pattern. 

It is not obvious from Eq. (1) that a unique solution exists which 
maximizes the entropy production. If, for example, the entropy scaled with 
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the fractal dimension, then the pattern which maximizes 6S would depend 
on the value of N. To see how the entropy production is influenced by the 
geometry of the pattern, it is useful to examine two limiting cases: the filled 
circle and the straight line. In the case of the circle, A~C~/N and At~ are 
identical. They both scale as N -~ The rate of entropy production, from 
Eq. (1), is proportional to ( I /N)log N. For a straight line, At~ is con- 
stant (two), while AaCt/N scales as N -1. The rate of entropy production is 
again proportional to (I/N) log N. For all values of the ffactal dimension 
d the total surface area per particle added scales as N(a/a~/N. If AaCt/N scales 
as N ~ 1/d)/N, the entropy production does not scale with d, and is propor- 
tional to (1 - 1/d)(i/N) log N for all values of N and d. The relative rate of 
entropy production then depends only on the fractal dimension and the 
appropriate prefactors of the area terms (which may themselves be func- 
tions of d) and is independent of the value of N. To test the validity of 
these relations, and to find the maximum state of entropy production (if it 
exists), it is necessary to produce patterns with various scaling properties. 

Clearly, connectivity alone will only generate compact structures. The 
scaling properties can be varied by an additional constraint, namely 
screening. Screening is an important factor in the formation of random 
fractals. O'6'7) In our model, a primitive definition of screening is used. The 
degree to which a point on a pattern is "unscreened" is determined by the 
solid angle in which that point "sees" the outside world. To investigate this 
phenomenon, a two-dimensional simulation is used where growth occurs at 
nearest neighbor sites on a square lattice. A particular surface area site is 
"active" if it is unscreened above some minimum solid angle threshold. 
While this screening constraint is simplistic, it elucidates the physics essen- 
tial to answering the questions posed above. We will motivate the choice 
of a step function later. The simulation is performed for thresholds between 
0 and 300 deg, for 50,000 points, or until the pattern reaches the border of 
a 1000 x 1000 grid. All active sites have equal probability, and the next 
growth site is chosen at random from a list of active locations. The initial 
condition was a cross of five particles centered on the grid. Each growth 
event can add new active area sites. After each growth event, every active 
site was checked to see if the addition of the new point reduced the 
unscreened angle below the threshold. If so, the screened site was removed 
from the active list. 

Patterns obtained for various screening conditions are shown in Fig. 1. 
For small thresholds, the screening condition is weak and compact struc- 
tures with small holes are formed. As the minimum unscreened angle is 
increased, the holes increase in size until holes as large as the pattern radius 
form. At this point the pattern is made up of numerous thick branches. 
Larger screening angles result in thinning of the branches. Eventually, 
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Fig. 1. The pattern formed at unscreened thresholds of (a) 60, (b) 125, (c) 140, and (d) 220 
deg. Part (b) is near the threshold for the maximum rate of entropy production. 
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branches begin to screen themselves. Above 200 deg., patterns with fractal 
dimension near one are formed. Short branches form at the ends of these 
linear patterns, but as the tips advance the branches quickly become 
screened. 

For  each pattern, the active surface area and the total surface area 
were measured. The active area was indeed found to scale as N (~ 1/a). The 
compact structures (small angles) had the lowest total surface area, but the 
highest active area, as expected. All of the surface sites on a filled circle are 
active. However, the final pattern is independent of the order in which the 
perimeter is filled in. Large screening angles result in the highest total 
surface area and smallest active area, as discussed above. 

The minimum solid angle specified for each pattern corresponds only 
to the threshold above which surface area sites are active. There exists a 
distribution of unscreened angles (above the threshold) corresponding to 
the state of each active area site when it was chosen for growth. To deter- 
mine the mean unscreened angle, this distribution was measured for each 
pattern and fit to a Gaussian. At low angles, the distributions were fairly 
broad. For  example, at a threshold of 40 deg., the F W H M  was 100 deg. 
This narrowed to a minimum of 32 deg. at a 160 deg. threshold. 

It is possible to calculate the rate of entropy production of the various 
patterns from the measured active and total surface areas using Eq. (1). 
The results for N =  50,000 are shown in Fig. 2a. The data are plotted as a 
function of the mean unscreened angle ( 0 )  instead of the designated 
threshold, in order to compare consistently the current simulation to more 
realistic processes (see below). The maximum rate of entropy production 
occurs at a mean unscreened angle of about 160 deg. (Fig. lb). The fractal 
dimension for each pattern was computed from the two-dimensional 
autocorrelation and is plotted in Fig. 2b. It is clear from the data in Fig. 2 
that a peak in entropy production does occur. It corresponds to a critical 
point in the screening condition where the patterns become self-similar 
random fractals. It is evident from Fig. 2b that a phase transition between 
compact and one-dimensional structures occurs at this point. 

To the extent that the growth of the compact and one-dimensional 
patterns is more stable with respect to variations in the screening 
constraint, one might consider the steady-state growth of compact or 1D 
patterns to be "closer to equilibrium" than the growth of a fractal pattern. 
That these patterns produce entropy more slowly than the fractals is con- 
sistent with Prigogine's minimum entropy principle. This observation does 
not prove that principle in a general sense. In fact, Landauer (13) proved 
that while many open systems (which satisfy the "not-far-form equilibrium" 
condition) evolve to ordered states, they are extremely sensitive to fluctua- 
tions. In particular, the lifetime of the ordered state can depend quite 



Ent ropy  Produc t ion  in Pat tern Format ion  337 

sensitively on the history of the system as it developed. It is interesting to 
consider the two "more stable" pattern geometries our system is capable of 
producing. Both the compact patterns and the one-dimensional patterns 
produce entropy more slowly than the fractals which form at the critical 
point. Of the two, the compact geometry produces slightly more entropy 
than the 1D case. This is evident in Fig. la, or if one simply considers the 
limits of filling in an area or growing in a straight line. Linear growth never 
produces more than two options. Is it meaningful to consider the stability 
of these two limits? Certainly one could conceive an automata to produce 
1D and 2D patterns of arbitrarily large size. However, for all of our pat- 
terns, though self-consistent, the choice of the location for the next growth 
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Fig. 2. (a) The rate of entropy production and (b) the fractal dimension, as a function of 
the mean unscreened angle. For every threshold angle there is a distribution of unscreened 
angles above threshold where the pattern grows (see text). The arrows indicate where the 
patterns in Fig. l a - l d  fit on these data. 
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event is determined by fluctuations (a random number generator). These 
fluctuations put no limit on the size of the compact (or the fractal) pat- 
terns, but they can limit the lifetime of the lower entropy 1D state. At very 
large values of the screening angle thresholds, there is a finite probability 
that a linear pattern will "die" (i.e., it can grow to a configuration with zero 
active area sites available for future growth, without violating its screening 
constraint). To study completely the kinetics of this process--what fraction 
of the patterns eventually die and on what time scale?--it is necessary to 
generate a large number of patterns at each screening threshold. This work 
is in progress and will be reported in a future publication. However, it is 
already evident that the only states of our system which die are the states 
of lowest entropy production. These states (the 1D patterns) are the most 
sensitive to the fluctuations which occur during growth. 

An increase in the statistical error is evident above the 200 deg. screen- 
ing threshold in Fig. 2. This occurs because there are fewer points in those 
patterns. For large screening thresholds, the pattern becomes essentially 
one dimensional and a pattern of 50,000points will not fit on a 
1000x 1000grid. For screening thresholds above 260 deg., the rate of 
destruction of active growth sites can exceed the rate of production of new 
ways to grow. As a result of this information loss, it is possible for such 
patterns to cease growing after only a few thousand points. For these 
patterns it was simple to extrapolate the active and total surface areas to 
50,000 points, because the active area was constant and the total area was 
linear. 

The patterns formed at the critical point in Fig. 1 are similar to the 
fractals observed in random aggregation experiments. In fact, the informa- 
tion theory applied to our patterns is meaningful for other processes. In a 
diffusion-limited aggregation (DLA) simulation, for example, one can 
measure the unscreened angles of (active) area sites when they are chosen 
for growth. The average of the resulting distribution for a DLA simulation 
of 10,000 points is 160 deg. with a FWHM of about 75 deg. This distribu- 
tion, when integrated and normalized to the distribution for total area 
sites, yields the "activity" probability as a function of screening angle for 
DLA. The probability of being active rises smoothly from zero to one at 
about 160 deg. The transition is not a step function (used in our simula- 
tion). It has a width of _+ 30 deg. The rate of entropy production of DLA 
at 10,000 points was 30% higher than the maximum entropy production in 
our simulation for patterns of the same size. 

Several analogies can be drawn between the critical screening condi- 
tion and other critical phenomena such as percolation. In particular, the 
distance to the farthest screening point diverges at the critical point, as 
does the range of the correlations in the case of percolation. It is evident 
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from Fig. lb that the separation of the most remote screening point from 
the site it screens is on the order of the largest hole in the pattern. When 
the holes grow to the pattern radius (Fig. 2b) this separation diverges with 
the radius of the pattern. While the influence of a remote screening point 
will decay with distance, the location of every point on the pattern stores 
information which determines the activity of every area site. As in the case 
of other critical phenomena, the exact screening angle where scaling occurs 
may depend on the size of the system. We intend to study finite-size effects 
in the future. 

In conclusion, we have used information theory to study pattern 
formation governed only by connectivity and screening. As the screening 
constraint is made more severe, the pattern changes from compact to that 
of a random fractal and eventually to a one-dimensional structure. The rate 
of entropy production is found to reach a maximum at a screening angle 
near that observed in a true DLA simulation. At this point the pattern 
exhibits self-similarity and scaling. The only mechanism in our simulation 
which can transmit information from the smallest scales to the scales of the 
system is screening. While many critical phenomenon do not involve 
screening, it is characteristic of virtually all real dynamical systems which 
produce random fractal patterns. It is not unreasonable that in those 
systems the scaling is a consequence of the screening constraint on the 
pattern formation. Intuitively, the scaling occurs because the addition of a 
single particle (an operation on the smallest possible scale) can transmit 
information, screen, parts of the pattern as far away as the pattern radius. 
The formation of fractal patterns and maximization in the entropy produc- 
tion at the same structural phase transition reflect the fact that the dynami- 
cal system responsible for the pattern formation has reached a critical 
point. The changes in the pattern as the screening constraint is shifted away 
from criticality are analogous to those observed in other systems such as 
percolation. 

A C K N O W L E D G M E N T S  

We thank Richard Voss and Per Bak for some very useful discussions. 

R E F E R E N C E S  

1. T. A. Witten, Jr. and L. M. Sander, Phys. Rev. Lett. 47:1400 (1981). 
2. B. B. Mandlebrot, The Fractal Geometry of  Nature (Freeman, San Francisco, 1983). 
3. J. H. Kaufman, A. I. Nazzal, O. R. Melroy, and A. Kapitulnik, Phys. Rev. B. 35:1881 

(1987). 
4. J. H. Kaufman, O. R. Melroy, F. F. Abraham, and A. I. Nazzal, Solid State Commun. 

60:757 (1986). 



340 Kaufman et  al.  

5. L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Lett. 52:1033 (1984). 
6. A. Coniglio and H. E. Stanley, Phys. Rev. Lett. 52:1068 (1984). 
7. P. Meakin, H. E. Stanley, A. ConigIio, and T. A. Witten, Phys. Rev. A 32:2364 (1985). 
8. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59:381 (1987). 
9. I. Prigogine, G. Nicolis, and A. Babloyantz, Phys. Today 25(11):23 (1972); Science 

201:777 (1978). 
10. S. Wolfram, in Scaling Phenomena in Disordered Systems, R. Pynn and A. Skjeltorp, eds. 

(Plenum Press, New York, 1985). 
11. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (University 

of Illinois Press, 1962). 
12. D. L. Goodstein, States of Matter (Prentice-Hall, Englewood Cliffs, N.J., 1975), 

pp. 43~46. 
13. R. Landauer, Phys. Today (November 1987); Phys. Rev. A 12:636 (1975). 


